MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 8 vs. C81500 Copper

ASTM A356 grade 8 belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 8 and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
110
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 630
350
Tensile Strength: Yield (Proof), MPa 390
280

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 440
200
Melting Completion (Liquidus), °C 1470
1090
Melting Onset (Solidus), °C 1430
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 38
320
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
82
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
83

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 26
41
Embodied Water, L/kg 55
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
56
Resilience: Unit (Modulus of Resilience), kJ/m3 390
330
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
11
Strength to Weight: Bending, points 21
12
Thermal Diffusivity, mm2/s 10
91
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 1.0 to 1.5
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 95.4 to 97.4
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.5 to 0.9
0
Molybdenum (Mo), % 0.9 to 1.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.2 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5