MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 9 vs. 2018 Aluminum

ASTM A356 grade 9 belongs to the iron alloys classification, while 2018 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A356 grade 9 and the bottom bar is 2018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
120
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 17
9.6
Fatigue Strength, MPa 310
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 670
420
Tensile Strength: Yield (Proof), MPa 460
310

Thermal Properties

Latent Heat of Fusion, J/g 260
390
Maximum Temperature: Mechanical, °C 440
220
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1430
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 41
150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
11
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 2.4
8.1
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 56
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
37
Resilience: Unit (Modulus of Resilience), kJ/m3 570
670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 24
38
Strength to Weight: Bending, points 22
41
Thermal Diffusivity, mm2/s 11
57
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0
89.7 to 94.4
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 1.0 to 1.5
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 95.2 to 97.2
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0.5 to 0.9
0 to 0.2
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0
1.7 to 2.3
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.2 to 0.6
0 to 0.9
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15