MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 9 vs. SAE-AISI L3 Steel

Both ASTM A356 grade 9 and SAE-AISI L3 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 9 and the bottom bar is SAE-AISI L3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 670
600 to 2250

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
43
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.9
Embodied Energy, MJ/kg 33
27
Embodied Water, L/kg 56
53

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
21 to 80
Strength to Weight: Bending, points 22
20 to 49
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 19
18 to 67

Alloy Composition

Carbon (C), % 0 to 0.2
1.0 to 1.1
Chromium (Cr), % 1.0 to 1.5
1.3 to 1.7
Iron (Fe), % 95.2 to 97.2
95.5 to 97.3
Manganese (Mn), % 0.5 to 0.9
0.25 to 0.8
Molybdenum (Mo), % 0.9 to 1.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.2 to 0.6
0.1 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0.2 to 0.35
0.1 to 0.3