MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. 206.0 Aluminum

ASTM A36 carbon steel belongs to the iron alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 22
8.4 to 12
Fatigue Strength, MPa 200
88 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 300
260
Tensile Strength: Ultimate (UTS), MPa 480
330 to 440
Tensile Strength: Yield (Proof), MPa 290
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 50
120
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
33
Electrical Conductivity: Equal Weight (Specific), % IACS 14
99

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 44
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 220
270 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 17
30 to 40
Strength to Weight: Bending, points 17
35 to 42
Thermal Diffusivity, mm2/s 14
46
Thermal Shock Resistance, points 16
17 to 23

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.3
Carbon (C), % 0 to 0.26
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 99.25 to 100
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15