MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. EN 1.7228 Steel

Both ASTM A36 carbon steel and EN 1.7228 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is EN 1.7228 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
270
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
12
Fatigue Strength, MPa 200
390
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 300
540
Tensile Strength: Ultimate (UTS), MPa 480
900
Tensile Strength: Yield (Proof), MPa 290
630

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
46
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 18
20
Embodied Water, L/kg 44
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
100
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1050
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 14
12
Thermal Shock Resistance, points 16
26

Alloy Composition

Carbon (C), % 0 to 0.26
0.46 to 0.54
Chromium (Cr), % 0
0.9 to 1.2
Iron (Fe), % 99.25 to 100
96.7 to 98
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0.15 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.035