MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. Grade C-5 Titanium

ASTM A36 carbon steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
310
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
6.7
Fatigue Strength, MPa 200
510
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 480
1000
Tensile Strength: Yield (Proof), MPa 290
940

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
340
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 50
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 1.4
38
Embodied Energy, MJ/kg 18
610
Embodied Water, L/kg 44
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
66
Resilience: Unit (Modulus of Resilience), kJ/m3 220
4200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 17
63
Strength to Weight: Bending, points 17
50
Thermal Diffusivity, mm2/s 14
2.9
Thermal Shock Resistance, points 16
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.26
0 to 0.1
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 99.25 to 100
0 to 0.4
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4