MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. SAE-AISI 1345 Steel

Both ASTM A36 carbon steel and SAE-AISI 1345 steel are iron alloys. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is SAE-AISI 1345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
11 to 23
Fatigue Strength, MPa 200
230 to 390
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 300
370 to 440
Tensile Strength: Ultimate (UTS), MPa 480
590 to 730
Tensile Strength: Yield (Proof), MPa 290
330 to 620

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
51
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 44
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
78 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
290 to 1040
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
21 to 26
Strength to Weight: Bending, points 17
20 to 23
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 16
19 to 23

Alloy Composition

Carbon (C), % 0 to 0.26
0.43 to 0.48
Iron (Fe), % 99.25 to 100
97.2 to 97.8
Manganese (Mn), % 0
1.6 to 1.9
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.040