MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. SAE-AISI D3 Steel

Both ASTM A36 carbon steel and SAE-AISI D3 steel are iron alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is SAE-AISI D3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
9.8 to 15
Fatigue Strength, MPa 200
310 to 940
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
74
Shear Strength, MPa 300
470 to 1220
Tensile Strength: Ultimate (UTS), MPa 480
770 to 2050
Tensile Strength: Yield (Proof), MPa 290
480 to 1550

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 50
31
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
8.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
3.2
Embodied Energy, MJ/kg 18
48
Embodied Water, L/kg 44
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
97 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
28 to 74
Strength to Weight: Bending, points 17
24 to 47
Thermal Diffusivity, mm2/s 14
8.3
Thermal Shock Resistance, points 16
23 to 63

Alloy Composition

Carbon (C), % 0 to 0.26
2.0 to 2.4
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 99.25 to 100
80.3 to 87
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0
0 to 1.0