MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. C17510 Copper

ASTM A36 carbon steel belongs to the iron alloys classification, while C17510 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
5.4 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 300
210 to 500
Tensile Strength: Ultimate (UTS), MPa 480
310 to 860
Tensile Strength: Yield (Proof), MPa 290
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 50
210
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 14
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
49
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
4.2
Embodied Energy, MJ/kg 18
65
Embodied Water, L/kg 44
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 220
64 to 2410
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
9.7 to 27
Strength to Weight: Bending, points 17
11 to 23
Thermal Diffusivity, mm2/s 14
60
Thermal Shock Resistance, points 16
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.26
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Iron (Fe), % 99.25 to 100
0 to 0.1
Nickel (Ni), % 0
1.4 to 2.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.4
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Residuals, % 0
0 to 0.5