MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. C62400 Bronze

ASTM A36 carbon steel belongs to the iron alloys classification, while C62400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
11 to 14
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
42
Shear Strength, MPa 300
420 to 440
Tensile Strength: Ultimate (UTS), MPa 480
690 to 730
Tensile Strength: Yield (Proof), MPa 290
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 50
59
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
12
Electrical Conductivity: Equal Weight (Specific), % IACS 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
27
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.4
3.2
Embodied Energy, MJ/kg 18
53
Embodied Water, L/kg 44
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 220
320 to 550
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
23 to 25
Strength to Weight: Bending, points 17
21 to 22
Thermal Diffusivity, mm2/s 14
16
Thermal Shock Resistance, points 16
25 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.26
0
Copper (Cu), % 0
82.8 to 88
Iron (Fe), % 99.25 to 100
2.0 to 4.5
Manganese (Mn), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.4
0 to 0.25
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5