MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. C70400 Copper-nickel

ASTM A36 carbon steel belongs to the iron alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Tensile Strength: Ultimate (UTS), MPa 480
300 to 310
Tensile Strength: Yield (Proof), MPa 290
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 50
64
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
14
Electrical Conductivity: Equal Weight (Specific), % IACS 14
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
32
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 18
47
Embodied Water, L/kg 44
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 220
38 to 220
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
9.3 to 9.8
Strength to Weight: Bending, points 17
11 to 12
Thermal Diffusivity, mm2/s 14
18
Thermal Shock Resistance, points 16
10 to 11

Alloy Composition

Carbon (C), % 0 to 0.26
0
Copper (Cu), % 0
89.8 to 93.6
Iron (Fe), % 99.25 to 100
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5