MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. C84400 Valve Metal

ASTM A36 carbon steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22
19
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 480
230
Tensile Strength: Yield (Proof), MPa 290
110

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 50
72
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
16
Electrical Conductivity: Equal Weight (Specific), % IACS 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 44
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
36
Resilience: Unit (Modulus of Resilience), kJ/m3 220
58
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
7.2
Strength to Weight: Bending, points 17
9.4
Thermal Diffusivity, mm2/s 14
22
Thermal Shock Resistance, points 16
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.26
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 99.25 to 100
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7