MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. C89320 Bronze

ASTM A36 carbon steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 480
270
Tensile Strength: Yield (Proof), MPa 290
140

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
930
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 50
56
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
15
Electrical Conductivity: Equal Weight (Specific), % IACS 14
15

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.5
Embodied Energy, MJ/kg 18
56
Embodied Water, L/kg 44
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
38
Resilience: Unit (Modulus of Resilience), kJ/m3 220
93
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
8.5
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 16
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.26
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 99.25 to 100
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.3
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5