MakeItFrom.com
Menu (ESC)

ASTM A36 Carbon Steel vs. N07750 Nickel

ASTM A36 carbon steel belongs to the iron alloys classification, while N07750 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A36 carbon steel and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
25
Fatigue Strength, MPa 200
520
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 300
770
Tensile Strength: Ultimate (UTS), MPa 480
1200
Tensile Strength: Yield (Proof), MPa 290
820

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
960
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 50
13
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
60
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 1.4
10
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 44
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
270
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 17
40
Strength to Weight: Bending, points 17
30
Thermal Diffusivity, mm2/s 14
3.3
Thermal Shock Resistance, points 16
36

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0 to 0.26
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 99.25 to 100
5.0 to 9.0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.010
Titanium (Ti), % 0
2.3 to 2.8