MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP2 vs. 5052 Aluminum

ASTM A369 grade FP2 belongs to the iron alloys classification, while 5052 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP2 and the bottom bar is 5052 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
46 to 83
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 20
1.1 to 22
Fatigue Strength, MPa 160
66 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 270
120 to 180
Tensile Strength: Ultimate (UTS), MPa 430
190 to 320
Tensile Strength: Yield (Proof), MPa 240
75 to 280

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 420
190
Melting Completion (Liquidus), °C 1470
650
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 49
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.6
8.6
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 50
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 150
41 to 590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 15
19 to 33
Strength to Weight: Bending, points 16
27 to 38
Thermal Diffusivity, mm2/s 13
57
Thermal Shock Resistance, points 13
8.3 to 14

Alloy Composition

Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 0.5 to 0.81
0.15 to 0.35
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 97.4 to 98.6
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0.3 to 0.61
0 to 0.1
Molybdenum (Mo), % 0.44 to 0.65
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.3
0 to 0.25
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15