MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP21 vs. C86200 Bronze

ASTM A369 grade FP21 belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP21 and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
21
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
42
Tensile Strength: Ultimate (UTS), MPa 470
710
Tensile Strength: Yield (Proof), MPa 240
350

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 470
160
Melting Completion (Liquidus), °C 1470
940
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 41
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.8
2.9
Embodied Energy, MJ/kg 23
49
Embodied Water, L/kg 61
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
540
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 14
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.7 to 3.4
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 94.3 to 96.2
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.3 to 0.6
2.5 to 5.0
Molybdenum (Mo), % 0.8 to 1.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0