MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP5 vs. 4115 Aluminum

ASTM A369 grade FP5 belongs to the iron alloys classification, while 4115 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP5 and the bottom bar is 4115 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
38 to 68
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 20
1.1 to 11
Fatigue Strength, MPa 160
39 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 300
71 to 130
Tensile Strength: Ultimate (UTS), MPa 470
120 to 220
Tensile Strength: Yield (Proof), MPa 240
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Maximum Temperature: Mechanical, °C 510
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
41
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
140

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.7
8.1
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 69
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
2.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 140
11 to 270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 17
12 to 23
Strength to Weight: Bending, points 17
20 to 30
Thermal Diffusivity, mm2/s 11
66
Thermal Shock Resistance, points 13
5.2 to 9.9

Alloy Composition

Aluminum (Al), % 0
94.6 to 97.4
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
0.1 to 0.5
Iron (Fe), % 92.1 to 95.3
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0.3 to 0.6
0.6 to 1.2
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
1.8 to 2.2
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15