MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP5 vs. 6351 Aluminum

ASTM A369 grade FP5 belongs to the iron alloys classification, while 6351 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP5 and the bottom bar is 6351 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 20
7.8 to 18
Fatigue Strength, MPa 160
79 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 300
84 to 200
Tensile Strength: Ultimate (UTS), MPa 470
140 to 310
Tensile Strength: Yield (Proof), MPa 240
95 to 270

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 510
160
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
180
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
46
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
150

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.7
8.3
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 69
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
20 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 140
65 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 17
14 to 32
Strength to Weight: Bending, points 17
22 to 38
Thermal Diffusivity, mm2/s 11
72
Thermal Shock Resistance, points 13
6.1 to 14

Alloy Composition

Aluminum (Al), % 0
96 to 98.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 92.1 to 95.3
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0.3 to 0.6
0.4 to 0.8
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0.7 to 1.3
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15