MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP9 vs. 3004 Aluminum

ASTM A369 grade FP9 belongs to the iron alloys classification, while 3004 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP9 and the bottom bar is 3004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
45 to 83
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 20
1.1 to 19
Fatigue Strength, MPa 160
55 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 300
100 to 180
Tensile Strength: Ultimate (UTS), MPa 470
170 to 310
Tensile Strength: Yield (Proof), MPa 240
68 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 600
180
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 26
160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
42
Electrical Conductivity: Equal Weight (Specific), % IACS 10
140

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.0
8.3
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 87
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
3.2 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 140
33 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 17
18 to 31
Strength to Weight: Bending, points 17
25 to 37
Thermal Diffusivity, mm2/s 6.9
65
Thermal Shock Resistance, points 13
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
95.6 to 98.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 87.1 to 90.3
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0.3 to 0.6
1.0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.5 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15