MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP9 vs. EN AC-51100 Aluminum

ASTM A369 grade FP9 belongs to the iron alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP9 and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
57
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 20
4.5
Fatigue Strength, MPa 160
58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 470
160
Tensile Strength: Yield (Proof), MPa 240
80

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 26
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 10
110

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.0
8.7
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 87
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 140
47
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
25
Thermal Diffusivity, mm2/s 6.9
53
Thermal Shock Resistance, points 13
7.3

Alloy Composition

Aluminum (Al), % 0
94.5 to 97.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 87.1 to 90.3
0 to 0.55
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 0.3 to 0.6
0 to 0.45
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.5 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15