MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP9 vs. C94800 Bronze

ASTM A369 grade FP9 belongs to the iron alloys classification, while C94800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP9 and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 470
310
Tensile Strength: Yield (Proof), MPa 240
160

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 600
190
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 26
39
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 10
12

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
34
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.0
3.5
Embodied Energy, MJ/kg 28
56
Embodied Water, L/kg 87
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
58
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
9.8
Strength to Weight: Bending, points 17
12
Thermal Diffusivity, mm2/s 6.9
12
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0
84 to 89
Iron (Fe), % 87.1 to 90.3
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Manganese (Mn), % 0.3 to 0.6
0 to 0.2
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
4.5 to 6.0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0.5 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3