MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. AISI 410 Stainless Steel

Both ASTM A369 grade FP91 and AISI 410 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is AISI 410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
16 to 22
Fatigue Strength, MPa 320
190 to 350
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 410
330 to 470
Tensile Strength: Ultimate (UTS), MPa 670
520 to 770
Tensile Strength: Yield (Proof), MPa 460
290 to 580

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
710
Melting Completion (Liquidus), °C 1460
1530
Melting Onset (Solidus), °C 1420
1480
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 37
27
Embodied Water, L/kg 88
100

Common Calculations

PREN (Pitting Resistance) 13
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
97 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 560
210 to 860
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
19 to 28
Strength to Weight: Bending, points 22
19 to 24
Thermal Diffusivity, mm2/s 6.9
8.1
Thermal Shock Resistance, points 18
18 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0.080 to 0.15
Chromium (Cr), % 8.0 to 9.5
11.5 to 13.5
Iron (Fe), % 87.3 to 90.3
83.5 to 88.4
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.75
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0