MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. EN 1.0644 Steel

Both ASTM A369 grade FP91 and EN 1.0644 steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is EN 1.0644 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
17
Fatigue Strength, MPa 320
380
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 410
420
Tensile Strength: Ultimate (UTS), MPa 670
690
Tensile Strength: Yield (Proof), MPa 460
570

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
47
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 37
24
Embodied Water, L/kg 88
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 560
870
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 6.9
13
Thermal Shock Resistance, points 18
22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0.010 to 0.050
Carbon (C), % 0.080 to 0.12
0.16 to 0.22
Chromium (Cr), % 8.0 to 9.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 87.3 to 90.3
96.1 to 98.4
Manganese (Mn), % 0.3 to 0.6
1.3 to 1.7
Molybdenum (Mo), % 0.85 to 1.1
0 to 0.080
Nickel (Ni), % 0 to 0.4
0 to 0.4
Niobium (Nb), % 0.060 to 0.1
0 to 0.070
Nitrogen (N), % 0.030 to 0.070
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.2 to 0.5
0.1 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.035
Titanium (Ti), % 0 to 0.010
0 to 0.050
Vanadium (V), % 0.18 to 0.25
0.080 to 0.15
Zirconium (Zr), % 0 to 0.010
0