MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. EN 1.3960 Stainless Steel

Both ASTM A369 grade FP91 and EN 1.3960 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is EN 1.3960 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
34
Fatigue Strength, MPa 320
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
78
Tensile Strength: Ultimate (UTS), MPa 670
590
Tensile Strength: Yield (Proof), MPa 460
270

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Mechanical, °C 600
970
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
21
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 37
57
Embodied Water, L/kg 88
160

Common Calculations

PREN (Pitting Resistance) 13
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 560
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 6.9
3.9
Thermal Shock Resistance, points 18
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
16.5 to 18.5
Iron (Fe), % 87.3 to 90.3
60.2 to 67.9
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.85 to 1.1
2.5 to 3.0
Nickel (Ni), % 0 to 0.4
13 to 15
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0.15 to 0.25
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0