MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. EN 1.4458 Stainless Steel

Both ASTM A369 grade FP91 and EN 1.4458 stainless steel are iron alloys. They have 57% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is EN 1.4458 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
150
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
34
Fatigue Strength, MPa 320
150
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
78
Tensile Strength: Ultimate (UTS), MPa 670
510
Tensile Strength: Yield (Proof), MPa 460
190

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
16
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.6
5.4
Embodied Energy, MJ/kg 37
75
Embodied Water, L/kg 88
200

Common Calculations

PREN (Pitting Resistance) 13
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 560
89
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 6.9
4.2
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
19 to 22
Copper (Cu), % 0
0 to 2.0
Iron (Fe), % 87.3 to 90.3
40.2 to 53
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.85 to 1.1
2.0 to 2.5
Nickel (Ni), % 0 to 0.4
26 to 30
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.025
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0