MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. EN 1.4518 Stainless Steel

Both ASTM A369 grade FP91 and EN 1.4518 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is EN 1.4518 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
34
Fatigue Strength, MPa 320
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
79
Tensile Strength: Ultimate (UTS), MPa 670
490
Tensile Strength: Yield (Proof), MPa 460
210

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1000
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
20
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.0
Embodied Energy, MJ/kg 37
55
Embodied Water, L/kg 88
160

Common Calculations

PREN (Pitting Resistance) 13
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 560
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 6.9
4.1
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
18 to 20
Iron (Fe), % 87.3 to 90.3
61.4 to 70
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.85 to 1.1
3.0 to 3.5
Nickel (Ni), % 0 to 0.4
9.0 to 12
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.2 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0