MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. EN 1.4713 Stainless Steel

Both ASTM A369 grade FP91 and EN 1.4713 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is EN 1.4713 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
20
Fatigue Strength, MPa 320
160
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
74
Shear Strength, MPa 410
320
Tensile Strength: Ultimate (UTS), MPa 670
520
Tensile Strength: Yield (Proof), MPa 460
250

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
800
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
23
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
4.6
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 37
24
Embodied Water, L/kg 88
84

Common Calculations

PREN (Pitting Resistance) 13
7.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
84
Resilience: Unit (Modulus of Resilience), kJ/m3 560
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 6.9
6.2
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0.5 to 1.0
Carbon (C), % 0.080 to 0.12
0 to 0.12
Chromium (Cr), % 8.0 to 9.5
6.0 to 8.0
Iron (Fe), % 87.3 to 90.3
88.8 to 93
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.2 to 0.5
0.5 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0