MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. EN 1.7375 Steel

Both ASTM A369 grade FP91 and EN 1.7375 steel are iron alloys. Both are furnished in the normalized and tempered condition. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is EN 1.7375 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
20
Fatigue Strength, MPa 320
270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
74
Shear Strength, MPa 410
380
Tensile Strength: Ultimate (UTS), MPa 670
620
Tensile Strength: Yield (Proof), MPa 460
400

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
3.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 37
23
Embodied Water, L/kg 88
59

Common Calculations

PREN (Pitting Resistance) 13
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 560
420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0.010 to 0.040
Carbon (C), % 0.080 to 0.12
0.1 to 0.15
Chromium (Cr), % 8.0 to 9.5
2.0 to 2.5
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 87.3 to 90.3
94.5 to 96.7
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.8
Molybdenum (Mo), % 0.85 to 1.1
0.9 to 1.1
Nickel (Ni), % 0 to 0.4
0 to 0.3
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0.2 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0