MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. SAE-AISI 6150 Steel

Both ASTM A369 grade FP91 and SAE-AISI 6150 steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is SAE-AISI 6150 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
200 to 350
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
15 to 23
Fatigue Strength, MPa 320
300 to 750
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 410
400 to 730
Tensile Strength: Ultimate (UTS), MPa 670
630 to 1200
Tensile Strength: Yield (Proof), MPa 460
420 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
46
Thermal Expansion, µm/m-K 13
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 37
28
Embodied Water, L/kg 88
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 560
460 to 3590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
22 to 43
Strength to Weight: Bending, points 22
21 to 32
Thermal Diffusivity, mm2/s 6.9
13
Thermal Shock Resistance, points 18
20 to 38

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0.48 to 0.53
Chromium (Cr), % 8.0 to 9.5
0.8 to 1.1
Iron (Fe), % 87.3 to 90.3
96.7 to 97.7
Manganese (Mn), % 0.3 to 0.6
0.7 to 0.9
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.2 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.025
0 to 0.040
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0.15 to 0.3
Zirconium (Zr), % 0 to 0.010
0