MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. C83800 Bronze

ASTM A369 grade FP91 belongs to the iron alloys classification, while C83800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is C83800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 19
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
39
Tensile Strength: Ultimate (UTS), MPa 670
230
Tensile Strength: Yield (Proof), MPa 460
110

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 600
160
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 26
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
15
Electrical Conductivity: Equal Weight (Specific), % IACS 10
15

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 37
47
Embodied Water, L/kg 88
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
39
Resilience: Unit (Modulus of Resilience), kJ/m3 560
53
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
7.4
Strength to Weight: Bending, points 22
9.6
Thermal Diffusivity, mm2/s 6.9
22
Thermal Shock Resistance, points 18
8.6

Alloy Composition

Aluminum (Al), % 0 to 0.020
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0
82 to 83.8
Iron (Fe), % 87.3 to 90.3
0 to 0.3
Lead (Pb), % 0
5.0 to 7.0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0 to 1.0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0.2 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
3.3 to 4.2
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
5.0 to 8.0
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.7