MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. S20433 Stainless Steel

Both ASTM A369 grade FP91 and S20433 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
46
Fatigue Strength, MPa 320
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 410
440
Tensile Strength: Ultimate (UTS), MPa 670
630
Tensile Strength: Yield (Proof), MPa 460
270

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
900
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 37
39
Embodied Water, L/kg 88
150

Common Calculations

PREN (Pitting Resistance) 13
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 560
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.080
Chromium (Cr), % 8.0 to 9.5
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 87.3 to 90.3
64.1 to 72.4
Manganese (Mn), % 0.3 to 0.6
5.5 to 7.5
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
3.5 to 5.5
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0.1 to 0.25
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0