MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. S32001 Stainless Steel

Both ASTM A369 grade FP91 and S32001 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is S32001 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
28
Fatigue Strength, MPa 320
370
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
78
Shear Strength, MPa 410
450
Tensile Strength: Ultimate (UTS), MPa 670
690
Tensile Strength: Yield (Proof), MPa 460
510

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Mechanical, °C 600
970
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 37
37
Embodied Water, L/kg 88
150

Common Calculations

PREN (Pitting Resistance) 13
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 560
660
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
19.5 to 21.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 87.3 to 90.3
66.6 to 75.5
Manganese (Mn), % 0.3 to 0.6
4.0 to 6.0
Molybdenum (Mo), % 0.85 to 1.1
0 to 0.6
Nickel (Ni), % 0 to 0.4
1.0 to 3.0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0.050 to 0.17
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0