MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. S40930 Stainless Steel

Both ASTM A369 grade FP91 and S40930 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
23
Fatigue Strength, MPa 320
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
75
Shear Strength, MPa 410
270
Tensile Strength: Ultimate (UTS), MPa 670
430
Tensile Strength: Yield (Proof), MPa 460
190

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
8.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 37
32
Embodied Water, L/kg 88
94

Common Calculations

PREN (Pitting Resistance) 13
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
80
Resilience: Unit (Modulus of Resilience), kJ/m3 560
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 6.9
6.7
Thermal Shock Resistance, points 18
16

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
10.5 to 11.7
Iron (Fe), % 87.3 to 90.3
84.7 to 89.4
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.5
Niobium (Nb), % 0.060 to 0.1
0.080 to 0.75
Nitrogen (N), % 0.030 to 0.070
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0 to 0.010
0.050 to 0.2
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0