MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. S42035 Stainless Steel

Both ASTM A369 grade FP91 and S42035 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
18
Fatigue Strength, MPa 320
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 410
390
Tensile Strength: Ultimate (UTS), MPa 670
630
Tensile Strength: Yield (Proof), MPa 460
430

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
810
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 37
34
Embodied Water, L/kg 88
110

Common Calculations

PREN (Pitting Resistance) 13
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 560
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 6.9
7.2
Thermal Shock Resistance, points 18
22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.080
Chromium (Cr), % 8.0 to 9.5
13.5 to 15.5
Iron (Fe), % 87.3 to 90.3
78.1 to 85
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0.2 to 1.2
Nickel (Ni), % 0 to 0.4
1.0 to 2.5
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0 to 0.010
0.3 to 0.5
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0