MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP91 vs. S43940 Stainless Steel

Both ASTM A369 grade FP91 and S43940 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP91 and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
21
Fatigue Strength, MPa 320
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 410
310
Tensile Strength: Ultimate (UTS), MPa 670
490
Tensile Strength: Yield (Proof), MPa 460
280

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
890
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 37
38
Embodied Water, L/kg 88
120

Common Calculations

PREN (Pitting Resistance) 13
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 560
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 6.9
6.8
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
17.5 to 18.5
Iron (Fe), % 87.3 to 90.3
78.2 to 82.1
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0.3 to 0.6
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Titanium (Ti), % 0 to 0.010
0.1 to 0.6
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0