MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. 224.0 Aluminum

ASTM A369 grade FP92 belongs to the iron alloys classification, while 224.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 19
4.0 to 10
Fatigue Strength, MPa 330
86 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 710
380 to 420
Tensile Strength: Yield (Proof), MPa 490
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 260
390
Maximum Temperature: Mechanical, °C 590
220
Melting Completion (Liquidus), °C 1490
650
Melting Onset (Solidus), °C 1450
550
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 26
120
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 10
95

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
160
Embodied Water, L/kg 89
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 620
540 to 770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 25
35 to 38
Strength to Weight: Bending, points 22
38 to 41
Thermal Diffusivity, mm2/s 6.9
47
Thermal Shock Resistance, points 19
17 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.020
93 to 95.2
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
4.5 to 5.5
Iron (Fe), % 85.8 to 89.1
0 to 0.1
Manganese (Mn), % 0.3 to 0.6
0.2 to 0.5
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.060
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.35
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0.050 to 0.15
Zirconium (Zr), % 0 to 0.010
0.1 to 0.25
Residuals, % 0
0 to 0.1