MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. 5110A Aluminum

ASTM A369 grade FP92 belongs to the iron alloys classification, while 5110A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is 5110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19
4.5 to 28
Fatigue Strength, MPa 330
37 to 77
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
66 to 110
Tensile Strength: Ultimate (UTS), MPa 710
100 to 190
Tensile Strength: Yield (Proof), MPa 490
32 to 170

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 590
180
Melting Completion (Liquidus), °C 1490
640
Melting Onset (Solidus), °C 1450
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
220
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
57
Electrical Conductivity: Equal Weight (Specific), % IACS 10
190

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.8 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 620
7.6 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
10 to 19
Strength to Weight: Bending, points 22
18 to 27
Thermal Diffusivity, mm2/s 6.9
91
Thermal Shock Resistance, points 19
4.5 to 8.4

Alloy Composition

Aluminum (Al), % 0 to 0.020
98.5 to 99.8
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 85.8 to 89.1
0 to 0.25
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0.3 to 0.6
0 to 0.2
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.030
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.1