MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. 6105 Aluminum

ASTM A369 grade FP92 belongs to the iron alloys classification, while 6105 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19
9.0 to 16
Fatigue Strength, MPa 330
95 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
120 to 170
Tensile Strength: Ultimate (UTS), MPa 710
190 to 280
Tensile Strength: Yield (Proof), MPa 490
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 590
160
Melting Completion (Liquidus), °C 1490
650
Melting Onset (Solidus), °C 1450
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
180 to 190
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 10
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 620
100 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 25
20 to 29
Strength to Weight: Bending, points 22
28 to 35
Thermal Diffusivity, mm2/s 6.9
72 to 79
Thermal Shock Resistance, points 19
8.6 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.020
97.2 to 99
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 85.8 to 89.1
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0.3 to 0.6
0 to 0.1
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.6 to 1.0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.1
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15