MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. 7204 Aluminum

ASTM A369 grade FP92 belongs to the iron alloys classification, while 7204 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 19
11 to 13
Fatigue Strength, MPa 330
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
130 to 220
Tensile Strength: Ultimate (UTS), MPa 710
220 to 380
Tensile Strength: Yield (Proof), MPa 490
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Maximum Temperature: Mechanical, °C 590
210
Melting Completion (Liquidus), °C 1490
640
Melting Onset (Solidus), °C 1450
520
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
39
Electrical Conductivity: Equal Weight (Specific), % IACS 10
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.4
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 620
110 to 710
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 25
21 to 36
Strength to Weight: Bending, points 22
28 to 40
Thermal Diffusivity, mm2/s 6.9
58
Thermal Shock Resistance, points 19
9.4 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.020
90.5 to 94.8
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 85.8 to 89.1
0 to 0.35
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0.3 to 0.6
0.2 to 0.7
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.2
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0 to 0.1
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0 to 0.010
0 to 0.25
Residuals, % 0
0 to 0.15