MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. ASTM Grade LC2 Steel

Both ASTM A369 grade FP92 and ASTM grade LC2 steel are iron alloys. Both are furnished in the normalized and tempered condition. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is ASTM grade LC2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
27
Fatigue Strength, MPa 330
230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 710
570
Tensile Strength: Yield (Proof), MPa 490
310

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 590
410
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
52
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.4
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.6
Embodied Energy, MJ/kg 40
22
Embodied Water, L/kg 89
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 620
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 6.9
14
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.25
Chromium (Cr), % 8.5 to 9.5
0
Iron (Fe), % 85.8 to 89.1
95.3 to 97.5
Manganese (Mn), % 0.3 to 0.6
0.5 to 0.8
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
2.0 to 3.0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.045
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0