MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. EN 1.4662 Stainless Steel

Both ASTM A369 grade FP92 and EN 1.4662 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
28
Fatigue Strength, MPa 330
430 to 450
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Shear Strength, MPa 440
520 to 540
Tensile Strength: Ultimate (UTS), MPa 710
810 to 830
Tensile Strength: Yield (Proof), MPa 490
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 590
1090
Melting Completion (Liquidus), °C 1490
1430
Melting Onset (Solidus), °C 1450
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 40
45
Embodied Water, L/kg 89
170

Common Calculations

PREN (Pitting Resistance) 14
33
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
210
Resilience: Unit (Modulus of Resilience), kJ/m3 620
840 to 940
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
29 to 30
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 6.9
3.9
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
23 to 25
Copper (Cu), % 0
0.1 to 0.8
Iron (Fe), % 85.8 to 89.1
62.6 to 70.2
Manganese (Mn), % 0.3 to 0.6
2.5 to 4.0
Molybdenum (Mo), % 0.3 to 0.6
1.0 to 2.0
Nickel (Ni), % 0 to 0.4
3.0 to 4.5
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0.2 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.7
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0