MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. S31266 Stainless Steel

Both ASTM A369 grade FP92 and S31266 stainless steel are iron alloys. They have 52% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
40
Fatigue Strength, MPa 330
400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 440
590
Tensile Strength: Ultimate (UTS), MPa 710
860
Tensile Strength: Yield (Proof), MPa 490
470

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 590
1100
Melting Completion (Liquidus), °C 1490
1470
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 26
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 2.8
6.5
Embodied Energy, MJ/kg 40
89
Embodied Water, L/kg 89
220

Common Calculations

PREN (Pitting Resistance) 14
54
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
290
Resilience: Unit (Modulus of Resilience), kJ/m3 620
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
29
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 6.9
3.1
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
23 to 25
Copper (Cu), % 0
1.0 to 2.5
Iron (Fe), % 85.8 to 89.1
34.1 to 46
Manganese (Mn), % 0.3 to 0.6
2.0 to 4.0
Molybdenum (Mo), % 0.3 to 0.6
5.2 to 6.2
Nickel (Ni), % 0 to 0.4
21 to 24
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0.35 to 0.6
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
1.5 to 2.5
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0