MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. S44660 Stainless Steel

Both ASTM A369 grade FP92 and S44660 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
20
Fatigue Strength, MPa 330
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Shear Strength, MPa 440
410
Tensile Strength: Ultimate (UTS), MPa 710
660
Tensile Strength: Yield (Proof), MPa 490
510

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 590
1100
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
21
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 40
61
Embodied Water, L/kg 89
180

Common Calculations

PREN (Pitting Resistance) 14
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 620
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 6.9
4.5
Thermal Shock Resistance, points 19
21

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
25 to 28
Iron (Fe), % 85.8 to 89.1
60.4 to 71
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.6
3.0 to 4.0
Nickel (Ni), % 0 to 0.4
1.0 to 3.5
Niobium (Nb), % 0.040 to 0.090
0.2 to 1.0
Nitrogen (N), % 0.030 to 0.070
0 to 0.040
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0.2 to 1.0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0