MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FPA vs. EN 1.0488 Steel

Both ASTM A369 grade FPA and EN 1.0488 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FPA and the bottom bar is EN 1.0488 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
27
Fatigue Strength, MPa 180
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 240
280
Tensile Strength: Ultimate (UTS), MPa 380
440
Tensile Strength: Yield (Proof), MPa 240
280

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
49
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 18
20
Embodied Water, L/kg 46
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
100
Resilience: Unit (Modulus of Resilience), kJ/m3 150
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13
15
Strength to Weight: Bending, points 15
16
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.25
0 to 0.16
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98.3 to 99.63
96.6 to 99.38
Manganese (Mn), % 0.27 to 0.93
0.6 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.1 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.035
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050