MakeItFrom.com
Menu (ESC)

ASTM A372 Grade A Steel vs. EN 1.0473 Steel

Both ASTM A372 grade A steel and EN 1.0473 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade A steel and the bottom bar is EN 1.0473 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
22
Fatigue Strength, MPa 190
250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 320
360
Tensile Strength: Ultimate (UTS), MPa 500
570
Tensile Strength: Yield (Proof), MPa 270
360

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
52
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 18
20
Embodied Water, L/kg 45
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.3
0.1 to 0.22
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98.3 to 99.85
96.3 to 98.8
Manganese (Mn), % 0 to 1.0
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.040
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0.15 to 0.35
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020