MakeItFrom.com
Menu (ESC)

ASTM A372 Grade C Steel vs. EN 1.0425 Steel

Both ASTM A372 grade C steel and EN 1.0425 steel are iron alloys. Both are furnished in the normalized condition. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade C steel and the bottom bar is EN 1.0425 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
24
Fatigue Strength, MPa 290
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 440
300
Tensile Strength: Ultimate (UTS), MPa 710
470
Tensile Strength: Yield (Proof), MPa 430
260

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
50
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 19
20
Embodied Water, L/kg 46
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
98
Resilience: Unit (Modulus of Resilience), kJ/m3 500
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 22
15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.48
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.5 to 99.85
96.9 to 99.18
Manganese (Mn), % 0 to 1.7
0.8 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.020
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0.15 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020