MakeItFrom.com
Menu (ESC)

ASTM A372 Grade G Steel vs. EN 1.0488 Steel

Both ASTM A372 grade G steel and EN 1.0488 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade G steel and the bottom bar is EN 1.0488 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 280
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 22
27
Fatigue Strength, MPa 310 to 380
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 410 to 570
280
Tensile Strength: Ultimate (UTS), MPa 650 to 910
440
Tensile Strength: Yield (Proof), MPa 430 to 550
280

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.5
Embodied Energy, MJ/kg 20
20
Embodied Water, L/kg 49
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
100
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 810
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 32
15
Strength to Weight: Bending, points 21 to 27
16
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 19 to 27
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0.25 to 0.35
0 to 0.16
Chromium (Cr), % 0.4 to 0.65
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.4 to 98.4
96.6 to 99.38
Manganese (Mn), % 0.7 to 1.0
0.6 to 1.5
Molybdenum (Mo), % 0.15 to 0.25
0 to 0.080
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0.15 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050