ASTM A372 Grade H Steel vs. EN 1.5510 Steel
Both ASTM A372 grade H steel and EN 1.5510 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is ASTM A372 grade H steel and the bottom bar is EN 1.5510 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 200 to 280 | |
130 to 190 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 20 to 22 | |
11 to 21 |
Fatigue Strength, MPa | 310 to 380 | |
220 to 330 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 410 to 570 | |
310 to 380 |
Tensile Strength: Ultimate (UTS), MPa | 650 to 910 | |
450 to 1600 |
Tensile Strength: Yield (Proof), MPa | 430 to 550 | |
310 to 520 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 410 | |
400 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 45 | |
51 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
7.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
8.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.3 | |
1.9 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
1.4 |
Embodied Energy, MJ/kg | 20 | |
19 |
Embodied Water, L/kg | 49 | |
47 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 130 to 160 | |
46 to 260 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 500 to 810 | |
260 to 710 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 23 to 32 | |
16 to 57 |
Strength to Weight: Bending, points | 21 to 27 | |
17 to 39 |
Thermal Diffusivity, mm2/s | 12 | |
14 |
Thermal Shock Resistance, points | 19 to 27 | |
13 to 47 |
Alloy Composition
Boron (B), % | 0 | |
0.00080 to 0.0050 |
Carbon (C), % | 0.3 to 0.4 | |
0.25 to 0.3 |
Chromium (Cr), % | 0.4 to 0.65 | |
0 to 0.3 |
Copper (Cu), % | 0 | |
0 to 0.25 |
Iron (Fe), % | 97.3 to 98.3 | |
97.9 to 99.149 |
Manganese (Mn), % | 0.75 to 1.1 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 0.15 to 0.25 | |
0 |
Phosphorus (P), % | 0 to 0.015 | |
0 to 0.025 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.025 |