MakeItFrom.com
Menu (ESC)

ASTM A372 Grade L Steel vs. EN 1.0644 Steel

Both ASTM A372 grade L steel and EN 1.0644 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade L steel and the bottom bar is EN 1.0644 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 350
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14
17
Fatigue Strength, MPa 670
380
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 700
420
Tensile Strength: Ultimate (UTS), MPa 1160
690
Tensile Strength: Yield (Proof), MPa 1040
570

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 430
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
47
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.8
Embodied Energy, MJ/kg 22
24
Embodied Water, L/kg 54
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2890
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 41
24
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 34
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0.38 to 0.43
0.16 to 0.22
Chromium (Cr), % 0.7 to 0.9
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 95.2 to 96.3
96.1 to 98.4
Manganese (Mn), % 0.6 to 0.8
1.3 to 1.7
Molybdenum (Mo), % 0.2 to 0.3
0 to 0.080
Nickel (Ni), % 1.7 to 2.0
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.015
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0.1 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15