MakeItFrom.com
Menu (ESC)

ASTM A372 Grade M Steel vs. EN 2.4879 Cast Nickel

ASTM A372 grade M steel belongs to the iron alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade M steel and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18 to 21
3.4
Fatigue Strength, MPa 450 to 520
110
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
80
Tensile Strength: Ultimate (UTS), MPa 810 to 910
490
Tensile Strength: Yield (Proof), MPa 660 to 770
270

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 450
1150
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 46
11
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
55
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 2.0
8.3
Embodied Energy, MJ/kg 27
120
Embodied Water, L/kg 61
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
14
Resilience: Unit (Modulus of Resilience), kJ/m3 1140 to 1580
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 29 to 32
16
Strength to Weight: Bending, points 24 to 27
16
Thermal Diffusivity, mm2/s 12
2.8
Thermal Shock Resistance, points 24 to 27
13

Alloy Composition

Carbon (C), % 0 to 0.23
0.35 to 0.55
Chromium (Cr), % 1.5 to 2.0
27 to 30
Iron (Fe), % 92.5 to 95.1
9.4 to 20.7
Manganese (Mn), % 0.2 to 0.4
0 to 1.5
Molybdenum (Mo), % 0.4 to 0.6
0 to 0.5
Nickel (Ni), % 2.8 to 3.9
47 to 50
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.3
1.0 to 2.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Tungsten (W), % 0
4.0 to 6.0
Vanadium (V), % 0 to 0.080
0